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On the Energy Scattered from the Interaction of
Turbulence with Sound or Shock Waves
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M. J. Lighthill, B.A.,
(Department of Mathematios, University of llanchester).

st December 2

Sumpery

The energy scattered when a sound wave passes through turbulent
fluid flow is studied by means of the author's general theory of sound
generated asrodynamioally. The engrgy scattered per unit time from unit
volume of turbulence is estimated (E3) as

82L, v)2
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where I is the intensity and /\ the wavelength of the incident sound,
and v{ is the mean square velocity and L, thenacro-scale of the
turbulence in the direction of the incident sound, This formula does
not essume any partioular kind of turbulence, but does assume thot

A/Ly is less than about 1. For turbulence which is isotropic and

homogeneous the energy scattered, and its directional distribution, are
obtained for arbitrary values of A/L,. It is predioted that components

of the turbulence with wave-number k will scatter sound of wave-number

x at an angle 2 sin"*(k/2« ). The statistios of multiple successive
soatterings is considered (84), and it is predioted that sound of wavelength
less than the micro-scale of the turbulence will become uniform (i.e. guite
n.nd.gp) in its directional distribution in = distance approximately

1&'/ Vg o

The theory is extended (85) to the case of on incident acoustio
pulse. However this extended theory cannot be applied direotly to the
case of a shoock wave, for which it would prediot infinite scatterod energy.
This is due to the porfect resonance botwecn successive roys omitted
forwards whioh would oocur if the shook wave were propagoted at the speed
of sound. By toking into acocount (86) the true speed of the shook wave
(subsonio relative to the fluid behind it), the theory is improved to give
e finite value, 0,88 timos tho kinetic energy of the turbulence traversod
by a weak shook of strength s, for the total ocnergy scattered. However
the greater part of this enorgy oatohes up with the shook wave, and
probably is mostly re-obsorbed by it, and only the remainder (tabulated os
a function of s in Table 1) is froely sonttercd, bohind the shock wave,
as sound. The energy thus freely scatterod when turbulence is oonvectod
through the stationary shock wave pottern in a supersonic jet my form
an isportant pari of the sound ficld of the jot.

Introduction/
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1. Introduction

The two main types of oscillatory disturbance in fluids are sound
(ailatationsl) and turbulence (rotationsl), Sound is propagated; turbulence
is not; both the sound pressures and the turbulent vortex linos arc convected and
diffused. Infinitesimnl diletational and mtational disturbances to a
uniform moss of fluid at rest would not interact, as is well kmown, However
botwoch real sound and turbulcnce there is a non-linear ooupling,

One aspect of this coupling is that, when sound waves pass through
a given volume of turbulence, some sound is radiated from it at an angle to
the incident wave; in other words it is scattered. In tho present paper a
theory of this scattered sound is deduced from the author's general theory
(Lighthill 1952) of sound genorated aerodynamioally,

The subjeot has recoived some attention in Russia, and Blokhintzev
(1945, 1946) appears to have given a detailed theory. However the assumptions
in this theory are not made clear in the papors available to tho present author.
In Britain Ellison (1951) pave an account of seattering by o medium with
random variations in refractive index, and his theory could probably be
modified to doal with scattering by turbulencc. It confines its attentions,
however, to the distribution of intensity along the wave fronts of plane
waves passingthrough homogenecous turbulence. In the present paper the
turbulence is not assumed hoauogeneous, and the scattered sound ocmerging in
a given direction from a given part of the turbulence is isolated. The theory
is thereforc partioularly suitable for dealing with the effect of a limited
region of intense turbulence,

The scattering of sound due to the fluctusting velocities of
turbulence bears an obvious analogy to the scattering of light due to
fluctuating number density of polarizable molecules, It is shown in 82
that the analogy is even stronger than st first appears, since the
quedrupoles, to which on the Lighthill (1952) theory the turbulence is
acoustically equivalent, are in fact partly polarized by the inoident wave.

The radiation field of those quadrupoles which ore polarized is
oaloulated in §3, and its mean square is taken to find the corresponding
intensity field, which is shown to be that of the scattered sound. Since
the mean has to be taken with respect to the fluctuations in the turbulence
(as well as the more rapid fluctuations in the sound waves), o fair time
may be needed for the mean to be achieved; 1in the language of the acoustios,
"fading® mey be observed, However if tho intensity rosulting from
scattering by a volume of turbulence lorge compared with the individual
eddios is moasured, the mean or something noar it may woll be realised at
any instant, because large groups of the eddies traversed may have effectively
identical statistical properties,

It is shown in 82 that tho field of the polarized quadrupoles is
uncorrelated with the other sound fields which are prescnt, which means that
the caloulated intensity distribution can be added to theirs to obtain the
total intensity field., For same time the author bolicved that an argument
along thesc 1lines could bo used to prove that the scattered onergy was
extracted from the turbulonce itsolf; ho is gratoful to Dr. George Batohelor
for refusing to believe this sufficiently pertinaciously for the author to
£ind the flaw in his asrgument. Some of this work on energy relationships .
is indicated in the Appeniix, which shows hov the inoident wave is in fact
attonuated by an amount comperable with the energy scatterod, The author
would still guess that some of the onergy of turbulence may be roduced by
the passage through it of (espeoially) ultrasonics, but the evidence seems
to be that by far the bulk of the energy of tho soattored sound is oxtractod
as in other scattering phonomena, from the incident wavo.

As/
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As the frequency of the incident sound wave increases the total
scattered energy increascs but the angle at which it is scatterod deoreases.
In consequence the distance in which the direction of a plane wave becomes
practically rendom (81) varies much less with frequency.

When the theory is extended (85) from the cnse of steady incident
sound waves to that of an incident acoustic pulsc, the scatterod sound field
is deduced in terms of the spectrum of the total energy of the pulse (instead
of the intensity spectrum of the wave), The quantity which is deduced is
then the total scattered energy (and its directional distribution), as
opposed to the time rate of scattering of energy. But, as with the steady
sound wave, this quantity is correct only as a mean, although no longer a
mean with respect to time, Rather it is a "stochastic" mean, or mean
over a number of exporiments. For cach oddy reacts to the inoident pulse
in a manner depending on its state at the instant whon the pulse traverscs
it. However, as beforc, tho mean may be more closely achicved in one
oxperiment if large numbers of similar eddies are traversed.

Once more tho scattered energy is found to increase rapidly with
the frequency of the pulse, and indeed, in tho extreme case whon there are
discontinuities in pressure in the pulse, the theory gives a non-intcgrable
directional distribution of scattcred energy, so that the total scattered
energy is infinite. This impossible result is due to an overs lification
in the theory, namely that the speed of =2 pressure discontinuity (shook wave)
has been taken to be exactly that of sound. If this were so then pulses
emitted Porwards as the incident (perfectly sharp) pulse passes over them
would be perfectly superimposed, and this corresponds to the infinity in
the directional energy distribution at the direction of the incident pulse,

In 86 it is shown that when the departure of the spced of a rcal
shock wave from that of sound is taken into account, this perfect resonance
disappesrs, and a finite value for the scattered energy emerges. All that
is left of the infinity is that the energy which is scattered by the shock is
proportional to the first power of the amplitude, for weak shocks, instead of
to the square (as it is for continuous pulses). In fact for a weak shock of
strength 4p/p = s, the energy is predicted to be a fraction 0.88 of the
total kinetic energy of the turbulence traversed by the shock.

However a large port of the scattered energy is probably absorbed
by the shock wave itself and goes towords restoring, in port, its strength.
This is bocause the shock wave speed is subsonic relative to the fluid
behind it, so that sound emitted forword ot a small enough angle (and there
is a strong preference for forward emission) must run into the shook.

It oannot be transmitted, because the shock is supersonic relative to the
£1uid aheed of it. Doubtless some is reflected, but therc is ovidonoo
(Lighthill 1949, 1950) that reflection coefficients of shocks tend very
rapidly to zero with their strength.® So it is likely that much is absorbed.

Making the assumption that all is absorbed, ve are loft (86) with
an expression for the sound energy which is rree%! sonttered, i,e. without
hitting the shock again. This expression sho be of value in predicting
how much sound is produced in a supersonic jet os a result of turbulence
pessing through the stationary shock waves in the Jet.

2./
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™ Lighthdll (1950) shows this for waves oatohing up with the shook hoad-one
It is likely that the same is true for waves oblique to the shook, as the
discussion of the stationary oase (Lighthill 1943) already indiocotes,
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2. Description and Justification of the Approach Used.

Let vi be tho velooity field (a function of spoce and time)
of a turbulent flow, Similarly let V4 be the velocity field of a
sound wave inoident upon it. The magnitudes of vji and V4 are supposed
to remain small oompared with the specd of sound a.

Then as a first approximation (from which the scatterod sound will
be derived as a seoond approximation) tho combined velooity field will be
taken to be vi + Vy; 8o that tho fields are made to combine linecrly as
they would for infinitesimnl disturbances. The value of this assumption aa
a first approximation is examined critically later in this scotion.

Now the basic conclusion of Lighthill (1952) was that in any gas
flow, with veloocity fiold vy, the variations of density ore governcd by
the equations of sound with & right-hand side which corresponds physicelly

to a volume distribution of quadrupoles, Further, if tomperature variations

ere small (this point also is roconsidered below), and the mognitude of Wy
is small compared with a, then e good approximation to the quadrupole
strength is povivy por unit volure, where p, is the density on the
undisturbed astate.

Henoe in the present problem a first approximation to the
instantaneous quadrupole strength per unit volure is

po(vy + Vid(vy + V) = povavy e poVaVy + po(vaVy + viVi)e «ee(1)

Thus, to obtain a second approximation to the density ficld, we mst add u
those due to the incident sound wave and to the quadrupole distribution (1).

The three parts into which this distribution hos been divided on
the right-hand side of (1) represent, respectively,

(1) the quadrupoles responsible for the sound already generated by the
turbulence in the absence of the incident wave;

(i1) those responsible for self-modifications of wove farn in the
incident wave due to ite finite amplitude;

(1i1) those responsible for the sound gencrated by the interaction of
the turbulence and the incident wave, These last, of strength
po(viVy + vo¥g) per unit volume, nay be called the scattering quadrupcles.

Note that each scattering quodrupole has of its axes in the
iirection of the incident wave V;. Thus, os fore ed in 84, it is in
this sense polarized by the inoident wave.

Prom the point of view of the physical oonclusicn (Lighthill 1952,
§2) that aerodynamio generation of sound is due to flustuations in tho flow
of momsntum across fixed surfaces, the scattered sound is seen %o be -

by the momentum of the turbulence being shaken to and fro by the
inoident sound wave, and vice versa.

Now if the turbulent velooity field caon be split up into a mean
velooity field Vi and a fluotuating field vy' with sero mean, then
the soattering quadrupoles can be correspondingly split. The part

Po(V4Vy + F¥y) . ¢

yields a field which is correlated with the incident wave, and together
they constitute the weve of Tefraghed Ly the Eesn figw.

o/
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On the other hand the turbulent velociti '
scattoring quadrupoles ocities vy' yield a field of

eeol3)

For firstly their mean is zero

Po(vi'v‘j + VJ'Vi)

Quite uncorrelated with the incident wave,
because that of vy' is zero and vi' eand V4 are statistically unrelated.
Hence the covariance of (3) with Vg, i.e., thoir mean product of their
deviations from the mean, is zero, by a repetition of the same argument.
Similarly the quadrupoles (3) are uncorreloted with all the other quadrupole
fields whioh ere present., But sound ficlds which are uncorrelated (or, in
the old Rayleigh terminology, unrelated in phase) have the well-known
property that their intensities can be added to give the intensity of the
oombined field.

It follows that the intensity field of the quedrupoles (3), if it
can be evaluated, forms 2 genuine addition to the othor sound fields which
are prescnt, and may be desoribed briefly as the scattored energy. However
one cannot conclude that the inoident wave passes through the turbulonce unaltered,
even if there is no mean flow to refract it, bocause, as is shown in the
Appendix, a correlation which exists betwecn the incident weve and a segond
approximation to the scattering quadrupoles accounts for a rate of energy
los:tin ;he incident wave comparable with the rate at which energy is
scattered.

Of course in so far as the incident wave is modified as it posses
through the fluid, whether as a result of refraction by thc mean flow,
attenuation by the turbulence, or ordinary attenuation, it is the modified
value of Vi which should be used in the scattering quadrupoles and in
expressions which will be deduced for the scattered energy. This is the
main limitation on the use of vy + V3 as a first approximetion. On the
other hand it is shown in the Appendix that changes in Vj due to the
variable phase shifts which result from convection of sound by the
turbulent flow cen affect the scattered energy only negligibly.

Another source of attenuation is temperature voriations, if they
ere present. . To see how they fit into the prosent approach, note that
the quadrupole distribution (Lighthill 1952) resulting from variations in
the variables of state is

[(p - po) - 85(p = P0) 813 & e - 5,)813 ees ()
* oy

where p, p, B8 arc pressure, density and spocific entropy and suffix zero
refors to the undisturbed state. This shows incidentally that those

$ic temperature variations which result from the (nearly adiabatio)
ressure fluctuations in the turbulence can bc negleoted. It is variations
of speoific entropy, rather than temperature, thet produce attenuation by
scattering (the two being proportional only if kinetic temperature variations
are negligible), or in other words it is temperoture variations which originate
independently of the turbulence (2lthough their subsequent distribution may
have been influenced by turbulent convection).

Now the quadrupoles (4) are correlated with Vi and with othor
quadrupoles, beoan:e approximately (sinoe conditions for & pearticle of fluid
are nearly adiabatic)

o8 o8
. B (v1 + ;1 + Vl)--" ’ ---(5)
8t ox4

where/
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whore 3s/3x; ohanges only slowly with time, However, since Vi + Fi+vy
has zero oorrelation with the quadrupoles (3), one may infor that the effect
of the entropy variations in soattering and attenuating the sound does not
substantially modify the scattering due to the turbulent veloocitics.

Finally it should be notod that the scattcred enorgy may in turn
soatter more enorgy. Although this would be o small offoot for moderate
volumes of turbulence, it will appear in §i that for high frequency sounds
in large regions of turbulent flow it may be an important factor in producing
large changes of direction in the waves.

3. Scettering of a Flane Harmonic Incident Wave

If results for a plane incident wave aro worked out, then they oan
be applied to any inoident wave which is approximately plane over distances
of the order of those eddy-sizes which bear most of the turbulent energy.
For the scattering quadrupole strength (3) at two points at any greater
@istance apart are uncorrelated, and therefore the corresponding intensity
ficlds can simply be added., Further, if results for & harmonie incident
wave are worked out then those for an arbitrary steady incident wave oan
be deduced if its intensity spectrum is kmown, as will be seen at the end
of this section.

Consider then the plane harmonic incident wave given by
Vi = eacos [Kx, - at)]ds . .. (6)

Its direction of travel is the x, direction. Its frequency is «o/2%,
but it is found preferable to work rather with the radion wave-number « ,
because the most convenient analysis of the turbulence is with respect to
such a wave-number, and because the effectiveness of a component of the
turbulence in scattering the sound will be found to depend on the ratio of
their wave-numbers. The intensity of the sound wave fg) is .

I = 3 . o (7)

Now the strength per unit volume, (3), of the scattoring
quadrupoles duc to the fluctuating turbulent velocities v}, beoocmws

Poca cos [K(x, = at)](visdi + V35h) . ees(8)

The radiation field (Lighthill 1952) of a quadrupole distribution T4y per
unit volume is given by

' 1 xyx4r9° x-J
P-Pom === ""4["' TiJ(Yrt - !'"":!"ﬁ ’ "'(9)
yrat ) at® - 8o

the integral being taken over the whole field of quadrupoles. (x signifies
the magnitude of the vector x.)

Now the farm of (9), with T44 given by (8), will be simplified
by the assumption that typioal rrequencges of vi at o point are small
sompared with the frequency «a/2% of the incident wave (4.), so that the
differontiations nced only be applied to the cosine term, Notioe that if
this assumption wero false then the wavelength 2%/x of the sound would
greatly exceed the size of the eddies (because this is comperable to their
root mean square velooity divided by a typical frequency, which is very
small compared with the velooity of sound divided by tho frequenoy of the
sound, i.0., 2%/x, if the frequencies are oomparable). But one would
expect eddies small oompared with the wavelength not to affoot the sound
fropegation appreoiably, and indoed this expectation is given quantitative
support below,

Moking/
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Making the assumption desoribed, (8) and (9) give H

Pt xx 1x =
P =Py~ - -g;-(;- fi;i /'oos («(y, +|x-g|- at)]vi@,t - ‘%‘.-.%, ..{(10)
a

.

The 1i1tonsity of the scattered energy, Iy, taken as a mean over times
charagteristis of the turbulent fluctuations as described in §1, is deduced
as 8°/p, times the mean square of (10), namely as ' !

pot* e xyzpd

Iy~ --‘:;'—-- --;e--?/:/‘ cos [n(y1 +]x- X’ - at)] oos [z, + |x -z - at)]

afpe - BB Bt

In the integrand of (41) the mean values of the products of cosines and of
turbulent velosities oan be taken separately because the fluctuations of the
two are statistically independent.

The mean product of cosines in (11) is equal to

% cos [«(y, -z’_+|§-zl-|§-£')] , ...(12)

and this ocan be simplified when x is large compared with ly - s.l ,
as it is in the radiation field, to give - =

xi
% cos [15:(&-,)] , where kg = x<-- - 654). ees(13)
x d
Here k is the so-called scattering vector, whose direction bisects that |
of the incident wave revorsed and that of the point x where the intensity s
is to be determined. \ |

The mean product of velocity deviations in (11), or "covariance" :
(of which a correlation coefficient is a non-dimensional form) is negligible |
if y and 3z are points which have no eddy in common containing o significant
part of the turbulent energy. But when they have such an eddy in oommon, 1
the difference betwecn the times ot which those two velocities in (11) are v
taken mist be nogligible, because the ratio of = typloal eddy diameter to l;
a time significant in the turbulont fluctuations is much smaller than the '
velocity of samnd if the Mach number of the turbulence is low. As a result
one oan rewrite the covariance os a simultancous covariance, and cease to .
display the time explicitly, remembering always that the timo at which it is
supposed to be evaluated is the time of emission of the scaticred energy.

Equation (1), with the simplifications whioh have been discussed,
and substituting also for e in terms of the intensity (7) of tho
incident wave, becomos

2xIx* xyx42?
I.N -;:- -E;Jf" '13(9 ’ ‘ 0.-(14)

Py - 3; [T o0 e - e e
now/
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Now the quantity Py4(k), in torms of which tho intonsity of
scattered sound has beon expressed, can be interpreted as tho spectrum, with
respect to the veotor vove-number k, of the single volume integr:

/Vi,(l)":‘l(l)dl , o (16)

taken over the whole turbulent flow. (In partioular, %p.Fis(k) .is the
spoctrum of the total kinetic cnergy of the turbulent field.’) o see this,
note that by Fourier's intogral theorem the integral of Fj4(k) over the whole
of k-space gives (16). Also Fy (X) 1is evidently small wgen k is either
large or small compared with the Jave-numbors of the encrgy-bearing cddies,
respeotively by the Riemann-Lobosgue theorem and because for small k it
becomes more and more noarly proportional to the variance of the totel momentum
of the turbulence, which is zero.

It follows therofore from (14) that the scattered intensity is large
only at points where the "scattering veotor" Xk is oo able in magnitude
with tho size of the energy-bearing eddies. Since by (13) its mognitude is

k = 2«ein %9 , , L1

where 6 is the direction of the point x relative to the direction of the
incident vave, we can conclude

(1) that if 2« is less thon the wave-numbers of the main energy-bearing
eddies there is relatively little scattered sound; this arises from the biggest
eddies only and its directional maximum is at 6 = =x (opposite to the
direction of the incident wave);

(1i) thot if « is of the same order of magnitude as the wave -numbers
of the main onergy-bearing eddies, there is o fairly even directional
distribution of the scattered sound, except for a marked falling off in a
oone moar 6 = O, wherein the k given by (17) falls below the wave-numbers of the
energy-bearing eddies*;

(111) that if « is greatcr than those wave-numbers, then the bulk of
the soattered sound is thrown forward in o cone with # small (although
with an interior cone, in which 8 is much smeller, still excluded); the
restriction on the direction to a solid angle of order “k~? for large «
then roduces the rate at which tho total scattored energy incrcases with
x from «* as in (14) to . : .

One can obtain quite o simple expression for the total scattered
onorgy in this last ccsc of very high frequency sound, for which the energy
soattered is greatest., For the total encrgy scattered per unit time is the
integral of (14) over a large sphore with centre x = 0. Now by (13)
this is the some as x°/+4 times the integrol over a lorge sphere in
X-spece with centre (-, 0, 0) and rodius «. Thus the soattered power is

?, = ff;/(ah . ‘f} (63, . E%)Q . ‘f:.j P08, eeera(18)

a

over such a sphere. But, in coses whore Py (k) 4s significant only whore
k/x  1is small, the integral noed be takon 445 over the part of the sphere

where/

» al % in 21l coses o minimum in scattercd energy at the direction
wlgo:omm'g-ﬂemxpom, since on the opproximations which have led to (14)
I. - ° mn 8‘ = 0, 10.., 'Mn 9 = 9°°c
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where this is so, and this part gne Pig.1) is approximately the part of the
plane k; = O in which P;i(k) is significant. PFrom this, approximating
also the coefficient of F“&) in the integral, we obtain

24

, exI« °°[
Py = ""-[ ) P, (0, ky, Xk, )dkadk,

nd ~0 -

vy, VI, s Yo YOV, + W, ¥, g8, L (49)

the integrals being equal by (15), and by Fouricr's integral thecrem.

The inner integral in (19) is often written where L, (Taylor's
"Macro-soale of turbulence", or corrolation radius) is = measure of the
width in the xi1~ dircotion of the energy-bearing eddies at the point y.
In terms of this length, the rate at which energy is scattered from ﬂ%
volume of turbulence, by an incident wave in the x,- direction with nsity I,
and with wave-number & large oompared with those of the energy-bearing
eddies, is*

21'?1'* 't; . (X (20)
a

Py

ot

The quantitative significance of this result, as of the others in this section,
will be discussed in 84.

A similor result without the restriction on the size of « can be
obtained in a useful form only in the special case of homogeneous isotropio
turbulence. For homogeneous turbuleonce the covariance in (15) depends only
on the relative position of y anmd gz, and it is usually written

v&-(l)va(‘z) = Rij(‘zﬁ- x’) o aco(21)
The spectral tensor is then defined (Batohelor 1949) as

1 .
1‘13(‘1&) = g;e-lfkij(z)e-iblzdx_. ...(22)

Evidently the spectral tensor used above in the general cose, namely
P, 4(k), has the vialue &'_rij(;g) per unit volume of homogeneous turbulence,
wﬁgre M signifies "real port of".
Now in isotropic turbulonce Tj4(k) is 1y real, and is
e, o 2

expressible uniquely in terms of tho spectrum E £ the turbulent energy
(per unit mass) with respect to the scolar wave-number k, In fact

E(Xk)
Tyy(k) = el (1985 - kyky) « | ee(23)

Trus the intonuty of soattered sound per unit volume of turbulence, by
(44) with Pyy()) replaced by (23), is

w55 - (D) e
Agods/

» ‘ : ume of
Suall lotters (py and i,) will be used for the values, per unit vol
turbulence, of tl:' mttoif'ed power amd intensity Py and Ige
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Again writing 6 for the angle between the directions of incidence and
emission, so that x, = xo0o8 & and k is given by (417), and by
(13) k#/x = «(1-008 8), one deduces from (24) that

I¢ oof® 8 cot? (%)
1g~ =me cmemccecomeces E(2« singe) . .oo(25)

The form of the term E(2¢ sin}e) in (25) makes olear onoe more
points (1), (41) and (iii) above conoerning the direction of scattering.
The coefficient ocos’ 0 oxemplifios the general result ooncerning a minimum
at 90°. The coefficient oot® (46) indicates, as a oonsequence of the
spocial assumption of isotropy, & further minimum at 180°, It does not
however invalidate the oconolusion that 14,20 as 8 -»0 because as is
well knom E(k) = O(k‘) as k-0,

Integrating (25) over a lorge sphere with centre x = 0 we
deduce the rate at which enorgy is scattered from unit volume of isotropio

turbulence as
xI¢ ox
i P, * ----/ cos® 8 cot® (46) E(2¢ sin 38) sinede
i : L’ J o
=L B(k k
. e [ZK -S-.). Ml - Jax , eee(26)
a’ o k K ’
where
Wx) = (1 -8P0 -52) . .. (27)
It should be notioed that when « is much larger than the valuos of k for
which E(k) is significant formula (26) becomes -
xI@ FOE(k)
by = oere| e a, o (28)
a' .o k

which agrees with (20) in view of the known formula for isotropic turbulence

L e ome /”?‘.‘.‘Zu . v@) , ... (29)
4 zv;.ﬁ' o k '

the average in (29) being weighted with respect to the onergy spectrum.

The function M(k/x), which is plotted in Fig. 2 in its range
0 <X/x <2, signifies tho ratio of tho energy scattered by an oddy to the
energy scattorod according to tho formila which holds for large «
(d.0. small k/x). Of oourse no energy is soattered by eddies with
¥/x > 2, and-Pig. 2 mkes it clear that o not too poor approximation would
" be to say that eddies with k < x mako their full comtribution to p,,

namely
2 E(k) )

a%k

per unit wave -number, and oddios with k >x 4o not soatter ot all,
Yor/
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Por inoident waves which are hot pure tones it is easily seen
that their intensity spectrum can be used directly to synthesize the
intensity f£ield of the scattered energy,  In otler words the encrgy
soattored from two different pure tones mry be added, since the corresponding
fluotuations are uncorrclated, For the covariance of two ficlds like
(10) with difforent values of « takos the form (11) with different values
of « in the twWwo ocsines. The mean rroduct of the two oosines is then
gero. The samo would be true of two sines with different K, or of a
sino with a oosine even with the same «,

Thus if tho incident wave has the intensity spectrum I()
(with respect to wave-numbor), thon

(1) if the values of « for whioch I(«) is biggest exceed oonsiderably
the wave-numbers of the main enorgy-bearing eddies,

v,_ o3
Ps § 2y--=/ L I(x)dy cee(31)
& o
(11) while, for isotropic turbulence, without other rostriction,
x [“ 2% B(k) k
pg = == RI()a[ amemii- ak . ... (32)
‘o ‘0 k 4

To olose this section it may be noted that, while to a first
approximation the scattered sound has the same frequency n = ka/2x
as the incident wave, a slight spread in the frequency of the scattered
sound may be predicted if the analysis is observed more closely, For the
frequoncies in the scattercd sound must be those in the quadrupole field
(8), and these consist of sums and differences of n and the frequencios
of fluctuation of w4 at a point, Thus the degrec of spread would be a
measure of the typical frequencies with which the turbulent velooities in
the energy-bearing eddies fluctuste. It corresponds, of course, to nothing
more than tho "fading" which hos been already disoussed in §1.

L. Soms Quantitative Conclusions from the Theory for Hormonioc Waves.

If tho wevelongth /\= 2x/x of the incident sound is smoller
than the macro-scale og turbulence L,, then by (29) « will exoeed by

a factor of at least - an average valus of k for the encrgy-bearing

eddies. Honce fornuli (20) should be a rcasonable approximation, at least
acoording to the indications of (26). Thon tho attonuation due to
soattering, that is the proportion of the encrgy of the inoident wave whioch
is moattored in trawvelling through the turbulence for unit distance, is

=y} 8L oy §
v v,
) 1 1 1
B = Z@Lc;; ol el vee(33)
and tho.athmtion per wavelength, due to scattering, is
82°L, v'¥
BA= oot e v e(3)
A

This be compared, for example, with the maximum attenuation per
voml::’jth due to molecular oaun;, vhich (Knoser 1935, Knudson 1935, ond

references/
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references there given) is 0,002 for air at 20°C. (being attained at o
frequency which depends oritiocally on the concontration of impuritics).
¢ Since L, has been presumod to oxceed /A, the expression (3i) will certainly
: omead 0:002 1# (¥] )% > 0,005 s 1.7m/sec., vhich is o fairly modest
value,

Howevor the scattored energy does not completely disappear, but

- meroly adopts a new direction of propagation. This suggests an attempt

] to consider what will happen to a plane or spherionl wave on travelling some
distance through turbulent fluid, and in partioular to find the distribution
of direotion of propagation of the sound, resulting from multiple sucoessive
scatterings.

To achieve this let $p(A,8) sin 6d8 donote the probability that
after n soatterings tho direotion will moke on angle between 6 and
6 + 46 with the initiol direotion.® Then if a relatively large number
of soatterings at relatively small angles o are involved it may be shown
:hnt f :);atuful approximately the particl aifferential equation (of
iffusion

: ap 1 2 ap '
= = GF eme-- —-{sin o -- |, .+ (35)
i on 8in 3 39 99

Here & denotes the mean square deviation at each scattering. The solution
of (35) such that the direction is initially 4 = 0 is

P = ; (2m + 1)Pp(cos e)p‘*°°2“‘(m"1)" . ...(36)
m=0

Note that, as nweo, p«1, corresponding to a uniform directional
distribution after an infinite number of soatterings.

Now when the sound travels a dictance 1, moleoular and spherical ,
attenuation will reduce its intensity, but of what energy remnins a proportion ;
independent of those effoots, namely i

n
-Bl ('Ei')"" ’ uoo(37)

P n!

(Poisson's distribution), will havo beon scatterod n times. Summing the
product of (36) and (37) from n = O toc,, We obtain the distridution of

direction after propegation through a distance 1 as

P = ;(2! + 1)Py(cos 0)exp(« p1(1 - P’Hmﬂ);')]
R=0

= 1+ 3008 6 exp[~Bl(1 - p’ﬁ)] + eee e eee(38)

It is seen that if %7 is smll then the direotionsl
distribution tends to uniformity, as 1 inoreases, with a logarithmio

decremont
Y !

® The factor + sin 0 has boen inserted to ensure that for o uniform
directional distribution p = 1.




c-’- x
iﬂw = i‘/ o -3 2“’ .in Gde . 000(39)
o \I
For homogenecus isotropio turbulence this becomos, by (25),
‘Kl(‘ n
v 6%08 ® 8 cot?($9)E(2 ksin 10) sin ede
)
Cx [2" w(k) ]\ oco(h‘o)
= eee N{ - )ik ,
2¢ | o <l<‘
where
N(x) = (1 -32)2(1 - 3x?)(sin" 4x) ¥/($x)? . oo (11

The function N(x), which is plotted in Fig, 3, is very like (x)

(Fig. 2), and in prootice an adequate approximation to (40) may be to
replaoe N by 1 end the range of integration by (0,«). For very smoll
wavelengths A, smoller even than the mioro-sonle of turbulence A, the
expression (z.oS becomes

00

n .
---/ ke(k)ak . oo (42)

2&’.0

This integral involvos some of the energy-dissipating eddies @8 well as
some of the enorgy-bearing eddies, and would bc in practice rather less than

3 15 (V22 |2
foE(k)dk K°E(k)dk A B (-Z*--)- . oo (43)
° o 2
Teking it as 2v!* /A , wo obtain
. - 5 ;'—5
g voo(U)
) !

as the logarithmic doorement of the directional distribution. By (38)
the distribution will be uniform to within 1 db whon 1 times t’hh is

10g[3/(1 = 10°2)] 3, i.e,, when

a?
1 7 A== . .o (15)

v
1

In words, sound of wavelength less than the mioro-socle » of
the turbulence should becomo directionally random in a distance of order A
divided by the mean square xnch number of the turbulence. (This is tho
distanoce in which tho process beoomes oomplete, but evidently very
considerable changes of direotion would ooour in even a tenth of this
distance. )

5. Soattering of an Acoustic Pulse.

Por the scattering of a pulse it would perhaps be rensonable to
assume without further discussion that, as stated in , the directional
distribution of socttered enorgy per unit area, as a stochastic mean, is
related to the spectrum of the incident pulsc's onergy oxactly os in §3

the/
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the distribution of 1ntens%g was found to be related to the spootrum of
the inoident wave's intensity However a brief deduotion of g?u- rosult
from tho basioc principles of §2 will bo given.

Por a plano pulse in which

Vy = af(x, - at)dy , vee{U6)
the radistion field (9) of tho soattoring quadrupoles (3) is®
Po X4Xs f lz - 4
- ~ e meew [Py 4+ x - - at)v} < ot - -------) ooe
P = Por o= =g ALY (REDUTE === ) 4Ly - (07)

movided thot, as assumed (for the wave) in §3, the time-scale of the pulse
is smell compared with typiocal time-scales of the turbulence.

Now energy orosses unit area at o distant point x at a rate
#(p = pl/ p, PoT unit time. This can be written as a double intogral

Pod Xgxgx?

;;: --;:-.-- /f‘"(y1 + |'3.- L] -at)t"(z, + |x - g| - at)
vi(y,t - l}ig)vjé’t - L%t:-i-ﬂ)dydz . ... (148)

A stochastic mean of (48) is now teken, in the sonse describod
in 84; this involves putting o bar over the product vivt . The resulting
covariance may then be approximated as a simultancous o%viriunoe

Vi(z)va( z), for oxactly the same recsons as in §3.
Next this mean rate at which energy orosses unit arca at x

is integrated with respect to time, to obtain the mean total scatterod
energy Gy vhioh ocrosses unit area at x, in the form

P xix ﬂ ‘__"_"' '
Gy = ;:-:-;L /Jf o(s)vi(y)vi(zlapae eos (49)
where
(y -
s =y -5 slx-gl -lx-2] ¢ (3, -3) -’:".--E‘---'-). .e.(50)
and
ofw) = oD e el o (50)

But O(s) can be written in torms of the energy speotrum
of £ If £(r) be written as a Fourier integrol

£(r) -Edoi""r(x)d«. .+.(52)
ther/

® The suthor hopes to be forgiven for an anomaly of notation (diffioult
to avoid where random funotions are treated) throughout the next two
pages whereby primos attached to Vv's signify doportures from the mean,
and rimes attachod to f's mean difforentiation.

-——
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then the totel energy of the pulse (per unit area) is

pou'[-mt"‘(r)dr = upoa’[ P()F(=K)d« , v00(53)
lo
and hence
() = LmpE?F()F(-) vor(50)

is the spoctrum of its total energy perunit area per unit wave-number,
But by (51) and (52) i

<f:’; x:F( % ) Pi'al' dq)(/‘ igcu::F( % )pixg(rﬂ)dq)dr

(o]

c(;) =[ .

| -)
.

= 2{; HP(OF(-k)pt Pae = -1.2./p),4g(,)°°, 8dx . -++(55)

o9 poa Yo

Inserting (55) in (49), and recalling the definitions (13) of k
and (15) of PFiy(k), we obtain the result

£ X

Comparing this with (14) we obtain the principle enunciated at the
beginning of this section.

J 2nx 2
Gg = [~G(x)d - ﬁf"-”}ﬁ'“(g) . * -+ +(56)
v o

This principle makes it possible to take over the whole of
the rest of the theory without further labour. The general conclusions
about directional distribution, and its dependence on the ratio of typical
wave-numbers in the pulse and in the turbulence, ore unaltered.

In particular, when the wave-numbcrs containing most of the pulse
energy are large compared with those containing most of the turbulent
energy, then most of the soattered onergy is emitted at a sm2ll angle to
the incident energy. Further the total energy oy 8o emitted from unit
volume of the turbulence®, by (20), is

;‘i ———
0' = 211"2; [’GI?G(K)dK = zapov;.a,’FJfla (r)dr . 00.(57)
+ 0

-

The form of (57), the principal result for an acoustic pulse,
makea clear how the energy scattered from a pulse of given energy incrcases
as its length is diminished. In the limiting casc of a pulse containing 2
discontinuity in pressure (the idealization of a shock wave) it is evident
from both expreseions in (57) that ey becomes infinite, In the case of
the first expression this is bocause, if £ is discontinuous, G(k) 1is at
jeast of arder X ~' as 'K =>00, and in fact if f has only a single
disocontinuity, of amount €,

e
6~ Lm . (58)
x
(Note/

-~ -

™ Here, as in §3, small lotters (o, and gg) Will be used for the values,
per unit volume of turbulencc, of tho total cnergy scattered Eg and the
energy which orosscs unit arca at a point Gsg.
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(Note that, since (57) was based on the a
prroximation that « is la
the use of that approximation cannot itself be the cause of the :LnEegrai
being infinite.)

The predicted infinity in the total energy scattered can be
illuminated by a study of its directional distribution, although this is
yossible only for homogensous isotropic turbulence, In this case the total
) energy g, per unit area, scattered from unit volume turbulence at an

T e e gl
g e e e linem———

angle 0 "to the direotion of the incident pulse, by equation (25) of §3, is
. cos®s oot®(48) oo :
Gy = =mw-o-z-smeoee | CG(K)E(2€ sinje)dy,  ...(59) |
8ax ! °

and the contribution to this from a shock wave, by (58), is

Poa’e® cos®e cot®(48) 22;175 € /3 — cos®s cos?(46) (60)
PR *» sfueccn g weoes| «p vyl e emenemsoane o4 0
x Ba?x? 2 8inko 16m3\2 > sin®(6)

This becomes large so rapidly as 8 -> 0 that its integral e5 over a large
sphere is infinite, in agreement with the result obtained above,

) 6. Scattering of a Weak Shock Wave .

To get over the difficulty just mentioned, that a pulse with
discontinuitics in velocity produces aocording to the theory on infinite
amount of scattered energy, consider now a single plane shock wave, at which
the ohange in velocity is €a, inoident upon turbulemce. To aocord with
the assumptions of 82, ¢ must be smll, that is, the shock must be veak,

To seek to improve the theory, and remove the infinity, by oallling
in to account the finite thickness of the sock wave, would leave ey still
: very large indeed, And it will be seen below that there is another
meohanism in operation which outs off the large wave-number components in
: the shook wave spectrum (as far as their effect on scattering is concerned)
at & lower level than is achisved by thc internal structure of the shock

wave. :
H

The true cause of the theoretical infinite energy scattered
straight ahead is in the perfect resonance (mentioned in 5)_assumed between
pulses emitted in this dircction; and this is really absent because the shook
speed is not that of sound, but is supersonic relative to the fluid ahead

and subsonio relative to the fluid behind.. Since (for this reason) the
soattered energy must romain bohind the shook, let a signify the speed ot
sound in this region; then the shock speed is a/(1 + o), where |

. Ye it 1 +1 y +1
] G = memee €+ +<Z---- ) =1 g === .ee(64)
‘ L L L

and y 1is the ratio of the specific heats.

T o M ey

~z -

e O S L

‘ The velooity distribution resulting from the shook wave is
therefore ¥

vy = eH[-(1+ a)x, + at] 8, , vee(62)

where H si jes the unit furction), rather than of the form (46).
l(!awevor the lﬁ‘g:{itution of (1 +a)xs -'at for x, ~ at in (46) makes only
very slight differences in the subsequent work; these are as follows.

I/
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In (47) and (48), (1 + a) ; in , (1 1
4. Hence, in the 60;1:1{10:?5)]630:; Z‘, (4 }t?zyt S ,;)a);%pﬂ:f-m'
s

¥i - 5,), and finally (56) is correct provided that iven the new
definition v {56) kive
i
ki = K<f" - (1 + 0:)611) . 010(6})
x

From this, as in § 83 and 5, the value of G, integrated over a
large sphere (i.e. the total scattered cnergy) will be found first, for
genoral turbulonce, and sccondly the directional distribution of Gy for
homogeneous isotropic turbulence will be obtained.

Since G(x) 1is of order x~? for large & it appears from (56)
that the largsst contribution to Gy will be from wave-numbers « large
comparedvith those of the onergy-bearing eddies. Accordingly the integral
of the term in square brackets in (56), over a sphere of radjus x and centrc
the origin, is now found under this condition, following closely the method
in 83. By (63) the integral is the same as »/k* times the integral over
a large sphere in k-space with centre (=« (1 + a), 0, 0) and radius «.

If, as has been assumed, the integrand is significant only when k is much
smallor than x thon the only significant part of the sphere is approximately
pert of the plame k, = = ka. The integral is thereforc approximately

2/iF 2 pov
-;;- r/(.-‘??/ - NF"" (-Ka" ka’ ka )d'ka dks ’ * ..(6h)

(compare (18) of 83).

Substituting (64) for the term in square brackets in {56), and using
the farm (58) for G(«), which is cxact for thesimple plane shoock wavo here
considered, we deduce that

> o] e
EG = 2P°€, dl([ [ F11 ("Kﬂ;, kﬂ’ k")dkﬂdka . ..-(65)

o “=v’ =00

Since the integral of F,, over thec whole of wave number space is v? ’
per unit volume of turbulence, cquation (65) may be written as

L L

ey = .;-Pov;_" £ - epo? , ...(66)

where (61) has been used to show that in the case of a shook wave the

energy soattered depends on the first pover of the amplitude, not on the
second &s for continuous waves. It may bo shown that the contribution to
(56) from wave-numbers « not large compared with those of the energy-
bearing eddies, which has been neglected in the above, 1s small compared with
(66) at least by a faotor O(e).

Since, in terms of tho "strength" s = Ag/p of the shock wave,
¢ = oy, and since tho turbulent energy per unit volumo is approximately

3 Po:‘-'- the onergy socattercd is approximately a fraotion

..f‘.'.-..- = 0.8s (far air) (7))

Ny + 1)
of/




A

of the kinetic energy of the turbulence traversed by the shock, The reader
:I romi;ulad that this formula has been obtained on the assumption that s
s small,

\ Next the directional distribution of the scattered energy O, per
' unit area will be found, in the oase of homogenecus isotropis turbulence.
Then (56) beoomes (compare (24) of §3)

! '_“ xaEk { 2
- P L R S 1 RN
,’i’ o 2&’ Z‘ 1‘4 L % X

Writing es usual 6 for the angle between the direction of emission and
that of the inoident shook, we have by (63)

1
k = 2¢{{1 + ) sin®($8) + 7} 7 . .ee(69)
L In (69) the factor (1 + o) is relatively unimportant, but the term o'
is essential because it prevents the k° in the denominator of (6B) from
vanishing as 6 < 0. Leaving only the latter in, we f£ind after some
reduotion that

oosae sin’e
28°x® 16(sin’(40) + 1o° F
Substituting for G(%) in (70) from (58), we decduce that

; & s/)(-}( K)dx E{2K(ain’(a}9) + :';o.a)%} ¢ +ee(70)
. [+

cos’ & sin’e

e mm—ne g S i . (T
g (af’o‘ij (8in®(30) + ia’)e (m

: This may be compared with the value (60) (its limit as o <> 0) obtained

L by neglecting the difference between the speed of the shock and that of

\ sound. By contrast (71) hes a finite integral over the sphers.. and the

: verifioation that (essuming o small) this integral is € P v'%a, a8 in
(66), is straightforward. .

?; It should now be observed that (sce 81) energy scattered at a
sufficiently small angle 6 will almost immediately catoh up with the
shook. Ths condition for this is that the component, a cos 6, of its
velooity in the direction of motion of the shook, shall exoced the shook
speed a/(1 + a), 4in other words that

9 <seo (1 +0) § V(2a) . eee(72)

Henoe the soattered energy whioh does not run into the shook is the
integral of (71) over a sphere of radius x Wwith the conical region (72)
exoluded. Bince if 6>V (2a) the 3a” in the denominatar in (71)
my be neglected, as in (60), this freely scattored energy is

cos’9 con’ (#9)

— k3
R S B

% T R e g e e, e

!..(73)

2 seGpriN2.83t - 8.27 4 10t

where three torms in the oxpansion for small o are given bocsuse the
coeffiolents initially increase, In torms of the strength s, the frooly

soattered/
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scattered energy is a fraction
] 2 8
0.78% - 1,08 + 0,7s% eeo(74)

of the kinetic onergy of the turbulence traversod by tho shock wave. The

fractions (67) and (74) for soatterod and fr
tabulated in Table I. ) an eoly soattered oncrgy are

Table 1
““;-“T“Soa.ttered -"ﬁ‘oely ;;;;;;red
"0.05 0.0 0.006

0.1 0.08 0.014
0.15 0.12 0. 024
0.2 0.16 0.035
0.25 0.20 0.047
0.3 0.24 0.060

The fate of the energy, vhich instead of being "freely scattcred"
is scattered at such an angle that it runs into the shock, has becn
disoussed already in §1; it is probably mostly absorbed by the shock.

A rough cstimatc of the distance it travels, on the average, before running
into the shock, is the length-scale of an energy-bearing eddy. For
evidently the aquare bracket in (70) is largest when «a is cqual to the
wave-number k of such an cddy.® Hence an average of' the "effective
wavelength" of tho shock, is of order ok™ |, and pulscs may be supposed
to originate about this distance behind the shocks Since their speed
oxoeeds that of the shook by a factor 1 + a, the distance travelled
before catching up with it is of order k™,

A similar argument can be used to indicate the frequency spectrum
of the freely scattercd sound. Since components with wave-number « in
(70) are expeoted to produce sound with the same wave-number, it is aecen

that the wave-number spectrum of the freely scattered sound should reproduce,

roughly, that of the turbulence, but with the waye-numbers soaled up by
a factor % coseo (%6), whioh varics from (2a)=% to % in the range
of direotions of the freoly scattered sound. (To obtain the firequency
spectrum, one must insert tho additional soaling-up fector a/27%).

Referonces

® It is evident from this, or oven more clearly from (64), that tho
effective spectrum of tho short cuts off at a"' times the wave-number at
which the speotrum of tho turbulont enorgy does, say at 5/als. But tho
interval structure of tho wave introducecs its cut-off at about
/v, so that if € > v/aly), & Very small value indeed, the latter

will be unimportant,
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Appendix
It was pointed out in §2 that sinoe the expression

pc,(v:"VJ + vsvi) , «:(79)

which is a first approximation to the strength per unit volume of the
scattering quadrupoles, is uncorrelated with the incident wave V,, the
intensity fields of the two cean be added. That of (75) is of o

v*V® for smell v/a and V/a.

However there may be terms of smaller order in the scattering
quadrupole strength donsity, namely terms of order v°V, which are
corrolated with the incident wave, and the oovariance of their field with
the incident wave may provide contributions to the intensity field of the
same order V'V as the intensity field of (75).

Such higher order terms will arise is the velocity field departs
from vy + Vi as a result of interactions between the sound and the
turbulefice, = VWhen the wavelength is small oompared with the size of the
energy-bearing eddies, one may ostimate this departure by means of
geometrical optios to oonsist principally of a phase change in vy,
resulting from conveotion by the turbulent velocity field.

As a result of such convection a wave, which at the station
X = x, Was plane and of the form (6) would beoome

' r xt v
v1 s €A coﬂlf(x - at "/ ".'dx’.) sh. -0.0(76)
: xo a

The fluotuating part of the phase change, namely

f/l* v'ax , 000(77)
x 3
°

s

== __ X




™

- 24 =

has standard deviation approximately

k 1 1
2\%,
:(V1 )3(2111(11 - xo))! . 0..(78)
Over a distance X, = X, of a few eddy-Ssizes (78) will be small, even
though «L, has been assumed large, if the root mean square Maoh,number of
the turbylence is small enough. (Note that to find what happens as the
wave crosses a region which is a few eddy-sizes broad, one can imagine

the wave as it enters the region split into plane harmonic waves, and
treat each separately, as was shown to be permissible in 83.)

In consequence (75) is a valid first approximation to the quadrupole
strength density snd a second one is obtained by substituting (76) fgr PO

Vi therein. This second a ximati
‘1 toly PPTo tion will differ from the first by

exsin [« (x, - at)](éuv:, + a:hvg.)/::;vldx1 . ee(79)

The radiation field of this extra quadrupole distribution, by (9), is
Po e X X4 A
P- po ~ " —---; - 3--/ s‘j.n[x(y1 + l.x*-ll - at)] (V'iﬁ vidyi>d_y.: .o 0(80)
I x
0

2ra’ X

The intensity field, for large x, resulting from the interaction
of (80) with the incident wave

P=P = Po ecos[ {x, = at)] , ees(81)

is twioe their covariance, multiplied by e/ Py namely

- Eg;;:afi;i[sin[x(li- - (x1 - y))](v;[ i‘ovl'dyt},v . «o(82)

Now expression (82) is negligible except at points x for which typioal
values of x =-y, and X, - are small compared with x, =¥, .

PFor at other’poin’ta the sine term fluctuates rapidly about zero and the
net contribution from all points in the turbulent ficld will be nearly
zero, In consequence one may rep*aoo xvy by X vl, and then put

v’:/""vi'c‘ly1 2 v':L1 . ...(83)
“ Xo

Note that equation (83) is correct independently of the lower limit

provided that this is loss than about y, - 24, . it is only the phase
changes produced by the agtusl eddies aining a which are oorrelated
with the local turbulent velocity & point, which contribute to

the intensity field (82).

Henco the intonsity field from unit volume of turbulence, due
to the second order terms in the quadrupole strength, is

APV L X
i, = - ----;;---‘-% ;} sinx(x-x) , oeo(84)

and/




.22-

. and the oontributions of different parts of the turbulence are expected to
oancel out except where «(x - x,) is small,

: To deduce the contribution to the total energy p, radiated per

] unit time, one must integrate (84) over a large sphere of radius x, amd

[ & take the mean over all large yalues of «xx. Now the mean integrsl, in this
) sense, of (x}/x?) sinu(x - x,), is

! [ 2%
1 ‘ 2;:/ 00826 sin[w(1 - cos 8) 8in 638 = o= , . eee(85)
0 . K '

as a partial integration of sin{mx(1 = cos 6)] ain 636 shows. Henoe the
mt oontribution to p, is
2273 v
. 1 .
-Pole KV: L1 s = ZI?L,. ";‘?. . .-0(86)

Comparing with (20), which also is obtained on the assumption of small
wavelength, one sees that the two exactly balance.

i / The energy (86) is located prinoipally where X(x - xt) is less
than sbout %, in other words in the paraboloidel region .

t
: ] ] <2K (8)
x9+xa ':'xi . see 7

4o e g paea .

Sinoe the reduced energy lies entirely in this region (for which o -=> 0

8s % ->%) and the scattered energy lies entirely outside a cone

@ = constant >0, one may conolude that ultimately they beoome quite

separate, and that (86) represents an attenuation of the main wave direotly

corresponding to the scattered energy which was invéstigated in the mein ;

paper. 1t
The srgument given applies only ssymptotically, for sound of small &

wavelengths, and it is possible that for a given wavelength the correspondence "

between attenuation and scattered sound may not be perfectly exact. But ,

|
enough has been said to show that the sound wave is attenusted by an amount ;
at least of the same order of magnitude as the energy socattered,
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